238 research outputs found

    Global aspects of radiation memory

    Full text link
    Gravitational radiation has a memory effect represented by a net change in the relative positions of test particles. Both the linear and nonlinear sources proposed for this radiation memory are of the "electric" type, or E mode, as characterized by the even parity of the polarization pattern. Although "magnetic" type, or B mode, radiation memory is mathematically possible, no physically realistic source has been identified. There is an electromagnetic counterpart to radiation memory in which the velocity of charged particles obtain a net "kick". Again, the physically realistic sources of electromagnetic radiation memory that have been identified are of the electric type. In this paper, a global null cone description of the electromagnetic field is applied to establish the non-existence of B mode radiation memory and the non-existence of E mode radiation memory due to a bound charge distribution.Comment: Final version to be published in Class. Quantum Gra

    Spectral Cauchy Characteristic Extraction of strain, news and gravitational radiation flux

    Get PDF
    We present a new approach for the Cauchy-characteristic extraction of gravitational radiation strain, news function, and the flux of the energy-momentum, supermomentum and angular momentum associated with the Bondi-Metzner-Sachs asymptotic symmetries. In Cauchy-characteristic extraction, a characteristic evolution code takes numerical data on an inner worldtube supplied by a Cauchy evolution code, and propagates it outwards to obtain the space-time metric in a neighborhood of null infinity. The metric is first determined in a scrambled form in terms of coordinates determined by the Cauchy formalism. In prior treatments, the waveform is first extracted from this metric and then transformed into an asymptotic inertial coordinate system. This procedure provides the physically proper description of the waveform and the radiated energy but it does not generalize to determine the flux of angular momentum or supermomentum. Here we formulate and implement a new approach which transforms the full metric into an asymptotic inertial frame and provides a uniform treatment of all the radiation fluxes associated with the asymptotic symmetries. Computations are performed and calibrated using the Spectral Einstein Code (SpEC).Comment: 30 pages, 17 figure

    The affine-null metric formulation of Einstein's equations

    Full text link
    The details are presented of a new evolution algorithm for the characteristic initial-boundary value problem based upon an affine parameter rather than the areal radial coordinate used in the Bondi-Sachs formulation. The advantages over the Bondi-Sachs version are discussed, with particular emphasis on the application to the characteristic extraction of the gravitational waveform from Cauchy simulations of general relativistic astrophysical systems.Comment: Version to appear in Physical Review

    Book Review : The Universe. Visions and Perspectives

    No full text
    I review the collection of essays which the editors Naresh Dadich and Ajit Kembhavi have assembled as a festschrift to honor Jayant Narlikar

    Testing the well-posedness of characteristic evolution of scalar waves

    Get PDF
    Recent results have revealed a critical way in which lower order terms affect the well-posedness of the characteristic initial value problem for the scalar wave equation. The proper choice of such terms can make the Cauchy problem for scalar waves well posed even on a background spacetime with closed lightlike curves. These results provide new guidance for developing stable characteristic evolution algorithms. In this regard, we present here the finite difference version of these recent results and implement them in a stable evolution code. We describe test results which validate the code and exhibit some of the interesting features due to the lower order terms.Comment: 22 pages, 15 figures Submitted to CQ

    The Merger of Small and Large Black Holes

    Get PDF
    We present simulations of binary black holes mergers in which, after the common outer horizon has formed, the marginally outer trapped surfaces (MOTSs) corresponding to the individual black holes continue to approach and eventually penetrate each other. This has very interesting consequences according to recent results in the theory of MOTSs. Uniqueness and stability theorems imply that two MOTSs which touch with a common outer normal must be identical. This suggests a possible dramatic consequence of the collision between a small and large black hole. If the penetration were to continue to completion then the two MOTSs would have to coalesce, by some combination of the small one growing and the big one shrinking. Here we explore the relationship between theory and numerical simulations, in which a small black hole has halfway penetrated a large one.Comment: 17 pages, 11 figure

    Boundary conditions for coupled quasilinear wave equations with application to isolated systems

    Get PDF
    We consider the initial-boundary value problem for systems of quasilinear wave equations on domains of the form [0,T]×Σ[0,T] \times \Sigma, where Σ\Sigma is a compact manifold with smooth boundaries ∂Σ\partial\Sigma. By using an appropriate reduction to a first order symmetric hyperbolic system with maximal dissipative boundary conditions, well posedness of such problems is established for a large class of boundary conditions on ∂Σ\partial\Sigma. We show that our class of boundary conditions is sufficiently general to allow for a well posed formulation for different wave problems in the presence of constraints and artificial, nonreflecting boundaries, including Maxwell's equations in the Lorentz gauge and Einstein's gravitational equations in harmonic coordinates. Our results should also be useful for obtaining stable finite-difference discretizations for such problems.Comment: 22 pages, no figure
    • …
    corecore